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We investigate the classical and quantum dynamics of an electron confined to a circular quantum dot in the
presence of homogeneousBdc1Bac magnetic fields. The classical motion shows a transition to chaotic behav-
ior depending on the ratioe5Bac/Bdc of field magnitudes and the cyclotron frequencyṽc in units of the drive
frequency. We determine a phase boundary between regular and chaotic classical behavior in thee vs ṽc

plane. In the quantum regime we evaluate the quasienergy spectrum of the time-evolution operator. We show
that the nearest-neighbor quasienergy eigenvalues show a transition from level clustering to level repulsion as
one moves from the regular to chaotic regime in the (e,ṽc) plane. TheD3 statistic confirms this transition. In
the chaotic regime, the eigenfunction statistics coincides with the Porter-Thomas prediction. Finally, we ex-
plicitly establish the phase-space correspondence between the classical and quantum solutions via the Husimi
phase-space distributions of the model. Possible experimentally feasible conditions to see these effects are
discussed.@S1063-651X~96!02809-7#

PACS number~s!: 05.45.1b, 03.65.2w

I. INTRODUCTION

In this paper we present results of a study of the behavior
of an electron confined to a disk of finite radius, subjected to
spatially uniform, constant (Bdc) plus time-varying (Bac)
perpendicular magnetic fields. This allows us to analyze an
old problem that exhibits some very unexpected behavior
because of the time-dependent field. Without this time-
varying component of the field, the electronic states form the
oscillatorlike Landau levels@1#. With the addition of con-
finement, this constant field problem was studied in great
detail by Dingle@2#. He obtained perturbative solutions and
subsequently others obtained numerical and exact@3# solu-
tions. The solutions depend on the ratio of the cyclotron
radius rc to the confinement radiusR0. One of the most
important consequences of confinement is the presence of
‘‘skipping orbits,’’ which play an important role, for ex-
ample, in the quantum Hall effect@4#.

This problem is of significant interest as a consequence of
two independent developments over the past few years: one,
the important advances in our knowledge of classical chaos
@5# and, to a lesser extent, its quantum and semiclassical
counterparts@6#, and two, the spectacular advances in the
fabrication of very clean mesoscopic quantum devices@7#,
where a high-mobility two-dimensional electron gas is
trapped within a boundary of controlled shape. We attempt
to begin to bring the two fields together by asking how this
model system behaves from the classical dynamical point of
view and what its quantum signatures are. We predict ranges
of fields and frequencies where some different effects may
be experimentally observable. In this paper we consider the
single-electron case and leave for a future paper the many-
electron problem.

This paper is organized as follows. In Sec. II we define
the model with its classical and quantum-mechanical proper-
ties, elucidate the important parameters in the problem, and
describe the general method of solution. In Sec. III we in-
vestigate the properties of the classical model. Based on a

combination of analytic and numerical analysis, we obtain a
‘‘phase diagram’’ in the parameter space of the system,
which separates the quasi-integrable from the chaotic re-
gions. This phase diagram is shown in Fig. 1. The vertical
axis is the ratioe5Bac/Bdc of the magnitudes of the fields
and the horizontal axis is the Larmor frequency normalized
to the ac drive frequencyṽc5vc /v0. This phase diagram is
of paramount importance in making the connection between
the classical and quantum solutions. The values of the dc
field Bdc and drive frequencyv0 depend on the radius of the
dot R0 and certain other parameters. However, to give an

FIG. 1. Classical phase diagram for the problem, obtained from
the Lyapunov exponent, calculated as explained in Sec. III. The
vertical axise is the strength of the ac magnetic fieldBac relative to
the dc fieldBdc, while the horizontal axisṽc is the Larmor fre-
quency associated withBdc relative to the ‘‘kick’’ frequencyv0.
The shape of the phase boundary is fairly insensitive to the value of
the threshold Lyapunov exponentlc chosen to characterize hard
chaos~herelc51.0). The boundary is well fitted by the relation
e5C(lc)/ṽc , with C(lc51.0)'1.0 ~see the text for more de-
tails!.
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idea of the magnitudes of the physical parameters involved,
let us pick two representative points on the diagram:
(ṽc ,e) 5 ~0.1, 0.1! corresponds tov0 5 20 GHz andBdc 5
20 G whenR051 mm, while v0 5 800 MHz andBdc 5
0.08 G forR055 mm. Similarly, (ṽc ,e) 5 ~2.0, 2.0! corre-
sponds tov0 5 20 GHz andBdc 5 800 G forR051 mm,
while v0 5 20 GHz andBdc 5 32 G for R055 mm. The
details of the these estimates are presented in Sec. V.

We analytically obtain conditions and look at various
kinds of fixed points of the classical solutions. In Sec. IV we
study the spectral statistics of the quantum evolution opera-
tor, which shows clear signatures of the classical transition
from quasi-integrability to chaos. We also discuss the eigen-
function properties in different regimes using thex2 distri-
bution of n freedoms as a convenient parametrization of the
results. Then we turn to semiclassical correspondences,
where we use a phase-space approach to the quantum eigen-
functions and make direct connections with various types of
classical phase-space periodic orbits. In Sec. V we discuss
possible experimental scenarios where the predicted effects
may be observable. Finally, in Sec. VI we summarize our
results and present our conclusions.

II. MODEL

The model of a quantum dot we consider here is that of an
electron confined to a disk of radiusR0 subject to steady~dc!
and time-periodic~ac! magnetic fields. Choosing the cylin-
drical gauge, where the vector potential

A(rW ,t)5 1
2B(t)rêf , B(t) being the time-dependent mag-

netic field, the quantum-mechanical single-particle Hamil-
tonian in the coordinate representation is given by
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wherem* is the effective mass of the electron~roughly
0.067me in GaAs-AlxGa12xAs semiconductor quantum
dots! @7#, Lz is the operator of the conserved angular momen-
tum, andV(t)5eB(t)/m* c, e and c being the electronic
charge and the speed of light, respectively. Let the magnetic
field be of the form B(t)5Bdc1Bacf (t), where
f (t)5 f (t1T0) is some periodically time-varying function.
We can separate the HamiltonianH5Hdc1H1(t), where
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andH1(t)5
1
8m* @2BdcBacf (t)1Bac

2 f 2(t)#r2. HereHdc is the
standard static Hamiltonian for a charge in a homogeneous
constant perpendicular magnetic field, which includes the
para- and diamagnetic contributions, withvc5eBdc/m* c.
With the additional dropping of a term of the form
LzBacf (t), which can trivially be removed by a unitary trans-
formation,H1(t) gives the time-dependent contribution to
H. Note that H1(t)5H1(t1T0). In the limit in which

H1(t) is much smaller thanHdc one can study the modifica-
tion to the solutions associated withHdc by standard time-
dependent perturbation theory. As can be seen from the clas-
sical phase diagram given in Fig. 1, the boundary between
regular and chaotic behavior in fact occurs for
e5Bac/Bdc.1 andṽc.1. We are then led to approximate
H1(t) by

H1~ t !5 1
8 m* S ~evc!

2 (
n52`

`

d~ t2nT0!D r2. ~3!

With this simplification, the Hamiltonian~1! is then approxi-
mated by the sum of Eqs.~2! and ~3!. This choice is also
motivated by the following factors. First its calculational
ease. Thed function is the paradigm for time-dependent sys-
tems because one can proceed further in the analysis without
recourse to drastic approximations. Next are the effects of
chaos. Since our primary objective is to explore the quantum
manifestations of classical chaos, we are more interested in
the general issues of chaos rather than specific functional
forms. Even for a more ‘‘physical’’ choice of
f (t)5Acos(vt), one can easily show that the resulting func-
tional form ofV2(t) can be approximated sensibly as above.
Finally, there are classical considerations. As shown in the
Appendix, starting from the Lorenz force plus Maxwell’s
equations, one can write the classical equations of motion
exactly including the self-induced fields, even for the mag-
netic field given by B(t)5Bdc1BacT0(n52`

` d(t2nT0).
Classically, the associated Lagrangian is linear in the vector
potential. There are regularization problems, however, when
using this form in the quantum Hamiltonian, since in this
case there is an ill-definedAac

2 (t) term present. However, the
modelH5Hdc1H1 is well defined.

In order to more clearly see what the relevant parameters
in the problem are, we go over to dimensionless units, de-
fined by rescaling all lengths to the disk radiusR0, all masses
by the effective massm* , and all times by the period of the
ac fieldT0. Thus we define

r5r/R0 , 0<r<1 ~4a!

t5t/T0[
v0

2p
t, ṽc5vc /v0 , \̃5

\

m*v0R0
2 . ~4b!

In these units, Eqs.~2! and ~3! become

H̃5H̃dc1H̃1~t!, ~5a!
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where

h5S eṽc

2 D 2 ~5d!
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and the corresponding solutions to the time-independent part,
along with the boundary and normalization conditions, are
given by

H̃dcC̃nl~r ,f!5Ẽnlc̃nl~r !
eilf

A2p
, ~6a!

C̃~r ,f!5 (
n51

`

(
l52`

`

c̃nl~r !
eilf

A2p
, ~6b!

c̃nl~r51!50, E
0

1

c̃nl
2 ~r !rdr51. ~6c!

As pointed out by Dingle@2#, the physically acceptable so-
lutions to Eqs.~6! are the Whittaker functions of the first
kind @8#

c̃nl~r !5A 2

Nnl

1

r
Mxnl ,u l u/2~2pFr 2!, ~7!

where the frustration parameterF5F/F0 is the ratio of the
flux threading the dot to the quantum of fluxF05h/2e. The
quantitiesxnl are related to the eigenvalues via

xnl5
1
2 ~Ẽnl2 l ! ~8!

and are determined precisely by the requirement that the
wave function vanishes at the boundary@Eq. ~6c!#
Mxnl ,u l u/2

(F)50. In the limit of no confinementR0→`, we
recover the usual Laguerre polynomial solutions for the

c̃nl’s.
The frustration parameterF can also be written as

F5
1

4p SR0

l H
D 2 where l H5S \c

eBdc
D 1/2, ~9!

that is, it is proportional to the square of the ratio of the
confinement radius to the magnetic length. When 2pF!1,
the problem is equivalent to that of a nearly free electron,
bound by a very weak magnetic field, and so is amenable to
a perturbative treatment. In the opposite limit, the boundary
can essentially be neglected and we recover the results of
Dingle mentioned previously. It is in the intermediate re-
gime, when the two lengths are comparable, that we expect
the effects of confinement to be nontrivial, especially in the
presence of strong time-dependent fields.

In principle, we are able to cover the entire range of pa-
rameter values within the same framework by means of a
numerical evaluation of the Whittaker functions. However,
the Whittaker functions are not very well suited to large-
scale computations because of the time required to evaluate
each individual function. We choose instead to perform most
of our calculations in a Fourier sine basis, which is numeri-
cally much faster, and use the Whittaker basis as a check on
our results. Choosing the~orthonormalized! basis functions
as

xnl5A2

r
sin~npr !

eilf

A2p
, ~10!

one can show, after a straightforward calculation, that the
matrix elements ofH̃dc are given by
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where Si(x) is the Sine integral. One can similarly compute
matrix elements of other needed operators.

Having worked out a suitable set of basis functions, we
now proceed to tackle the full time-dependent problem. The
Schrödinger equation for the time evolution operator is

i \̃
]

]t
U~t,t0!5@H̃dc1H̃1~t!#U~t,t0!. ~12!

Since we have a periodic systemH̃(t11)5H̃(t) from the
Floquet theorem@9#, it is sufficient to determine the one-
period time evolution operatorU(t011,t0) from

i \̃
]

]t
U~t!5@H̃dc1Ṽ1~t!#U~t!, 0,t<1 ~13a!

Ṽ1~t!5Ṽd~t21! where Ṽ5
1

2
hr 2, ~13b!

where the parameterh has been defined previously. All the
information about the dynamics of the system is contained
within this Floquet operator since F(r ,f,t11)
5UF(r ,f,t), whereF is the total wave function. Because
of the periodicd-kicked dynamics, we can immediately in-
tegrate Eq.~13a! to get

Ul~1,0!5expS 2
i

\̃
ṼD expS 2

i

\̃
H̃dcD . ~14!

The subscriptl has been attached toU to emphasize that the
evolution operator has been restricted to that singlel value.
In other words, states with different values ofl evolve inde-
pendently, an immediate consequence of the conservation of
angular momentum in this system. The rightmost exponen-
tial operator in Eq.~14! evolves the wave function from just
after the ‘‘kick’’ at t50 to just before the kick at one period
under the influence ofH̃dc, while the operator to its left
propagates it from just before to just after the kick at a pe-
riod.

SinceU is a unitary operator, the spectrum of its eigen-
values can be represented as
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Ulfnl5ei«nlfnl . ~15!

The set of eigenvalues$«nlP(0,2p)% is collectively known
as the quasienergy eigenvalues~QEE’s! and the eigenfunc-
tions $fnl% as the quasienergy eigenfunctions~QEF’s! of
U. The investigation of the quantum dynamics of the system
is completely equivalent to determining the nature of the
QEE’s and QEF’s. The fundamental task is thus to obtain the
quasienergy spectrum of the evolution operator given by Eq.
~14!.

III. CLASSICAL DYNAMICS

We begin the discussion of the behavior of the model by
looking at its classical dynamics. The classical Hamiltonian
corresponding to the quantum one given by Eqs.~5! is

H̃5H̃dc1H̃1~t!, ~16a!

H̃dc5
1
2 pr

21
J2

2r 2
1
1

2 S ṽc

2 D 2r 21J
ṽc

2
, ~16b!

H̃1~t!5 1
2 hr 2 (

n52`

`

d~t2n!, ~16c!

where pr is the radial momentum andJ is the conserved
angular momentum. To make quantitative correspondences
between the classical and quantum results, we always set the
numerical values of the angular momenta in the two cases to

be equal, i.e., we setJ5 l \̃ .
In between the kicks at a period, and as long as it does not

hit the boundary atr51, the electron’s motion is governed
by the static HamiltonianH̃dc. The equation of motion in
this case is

r̈52S ṽc

2 D 2r1
J2

r 3
, ~17!

whose solution, in terms of the energyE,

E5 1
2 pr

21
J2

2r 2
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1

2 S ṽc

2 D 2r 21J
ṽc

2
, ~18!

is given by

S r ~t!

pr~t!
D 5SA 2

ṽc

Fb1asinH ṽc~t2t0!1sin21S 1
2 ṽcr 0

22b

a
D J G

a
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cosH ṽc~t2t0!1sin21S 1

2 ṽcr 0
22b
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where

b52E/ṽc2J, a5Ab22J2. ~20!

Here r 0 andt0 are initial conditions. For a given energyE,
the motion is constrained by the centrifugal barrier on one
side and the smaller of the wall radius~equal to 1! and the
constraint imposed by the attractive quadratic potential on
the other:

rmin<r ~t!<min$rmax,1%, ~21a!

where

rmin5A 2

ṽc

~b2a!, rmax5A 2

ṽc

~b1a!. ~21b!

Note that the equations of motion are nonlinear here, even in
the wall’s absence. The effect of collision with the wall~or
centrifugal barrier! is simply to reverse the direction of mo-
tion

S r ~tc
1!

pr~tc
1!

D 5S 1 0

0 21D S r ~tc
2!

pr~tc
2!

D , ~22!

wheretc is the time of collision with the wall~or barrier!.
Finally, the effects of the kicks att5n are obtained by in-
tegrating the equations of motion over an infinitesimal dura-
tion aroundn:

S r ~n1!

pr~n
1!

D 5S 1 0

hr 1D S r ~n
2!

pr~n
2!

D . ~23!

If we denote the mapping due to the ‘‘free’’ evolution of the
particle under the influence ofHdc by M0 @Eqs. ~19!#, that
due to the walls byMwall @Eqs.~22!#, and the mapping due to
the kick byM kick @Eqs. ~23!#, then the complete one-period
map is typically given by the product of severalM ’s for a
given energy, i.e.,

MT5~M0Mwall!
NM kick . ~24!

In general, the map is very complicated and very sensitive to
initial conditions. By recording the values at each successive
period, we obtain a surface of section of the trajectory of the
particle in phase space.

There are three independent parameters in the problem:

ṽc , e, and \̃ . However, for quantitative correspondences to
be made later with the quantum results, as mentioned earlier,

we keep the angular momentumJ5 l \̃ fixed, which reduces
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the number of parameters to the first two. The transition to
chaos is manifested in the parameter space spanned by
(e,ṽc) ~see Fig. 1!. All of our subsequent results refer to this
space. We did investigate the effects of varyingJ by varying

\̃ for fixed l and the results are quantitatively very similar.
The first~and most obvious! evidence of chaotic behavior

is seen in the Poincare´ surface of section in (r ,pr). In Figs.
2~a!–2~d! we show the sections corresponding toe values of

0.5, 1.5, 1.95, and 2.5, respectively, while\̃50.01,
ṽc52.0, andl55 are held fixed.@The reason for this par-
ticular choice has to do with the (e,ṽc) phase diagram for
this system, which is explained in more detail shortly.# In the
quasi-integrable regime@Figs. 2~a! and 2~b!#, the phase space
is dominated by invariant tori, which are close to those of the
unperturbed problem. As the value ofṽc is increased, the
tori begin to break up and isolated chaotic islands begin to

FIG. 2. Poincare´ surfaces of section in the (r ,pr) plane. The values ofe are ~a! 0.5, ~b! 1.5, ~c! 1.95, and~d! 2.5. \̃50.01, l510, and
ṽc52.0 are held fixed. We observe a gradual breakup of the invariant tori while going from~a! to ~d! so that eventually there is no longer
any structure present in the phase space.
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appear@Fig. 2~c!# until, finally, all evidence of invariant
curves disappears and all we see is the uniform chaotic sea
@Fig. 2~d!#. These values of (e,ṽc) corresponding to the in-
tegrable, intermediate, and chaotic regions will be retained
throughout what follows to make comparisons between the
classical and quantum results.

Corresponding to the transition from regular to chaotic
behavior, we begin to see the appearance of diffusive growth
in the averaged energy~or squared momentum! of a local-
ized ensemble of initial conditions. Figure 3~a! shows the
average energy as a function of time for the parameters cor-
responding to the quasi-integrable regime, while Fig. 3~b!
corresponds to parameter values in the chaotic regime. In
contrast to the behavior in the quasi-integrable regime, where
the energyE is regular, oscillatory quasiperiodic functioning
of time around a constant value, in the chaotic regimeE
grows linearly~or pr grows quadratically! with time. ~Here
and subsequently, ‘‘time’’ refers to stroboscopic time, just
after every kick.!

A quantitative measure of the degree of chaos in the sys-
tem is to calculate the largest Lyapunov exponent.~In our
reduced two-dimensional phase space, since the flow is
Hamiltonian, the Lyapunov exponents come in pairs of op-
posite sign.! Because our phase space is bounded, we use an
approach slightly modified from that used for an unbounded
system to the calculation of the exponent, as outlined by
Reichl @10#. The ~largest! Lyapunov exponent is defined by

ln~t, X0,0, Y0,0!5
1

nt (
j51

n

lnS djd0D , ~25!

whered05u Y0,02 X0,0u is the Euclidean distance between
the position of neighboring trajectories labeled byX 0,0 and
Y 0,0, and$dj%, j51, . . . ,n, is the sequence of distances gen-
erated between the trajectories atn successive time steps. If
d0 is not too large, then the limit
limn↑`ln(t, X0,0, Y0,0)5l( X0,0) exists and is independent
of both d0 and t. Furthermore,l( X0,0) is zero if X 0,0 is
chosen in a regular region, while it is positive ifX 0,0 is
chosen to lie in a chaotic region.

With the help of the Lyapunov exponent we constructed
the phase diagram shown in Fig. 1 for this system in the
(e,ṽc) parameter space in the following fashion. For a given
set of parameters (e,ṽc), we choose a very large number
~typically 106) of initial conditions X0,0 spread uniformly in
(r ,pr) phase space. Next we randomly choose a nearby
phase-space pointY0,0 within a circle of radiusd0, centered
aboutX0,0. We calculate the Lyapunov exponent, using for-
mula ~25!, from the successive evaluation of the distances
dj for each j iteration of the mapping. This process is re-
peated for several nearbyY0,0 trajectories. When the
Lyapunov exponent reaches saturation we average the result-
ing value over the set of initial conditions to findl. If this
asymptotic value is positive, the system is defined as chaotic.
To put a stricter criterion on the degree of chaos, we choose
a threshold value of the exponentlc beyond which the sys-
tem is in the regime of hard chaos. We setlc arbitrarily
equal to the value 1, but as a check we generated Poincare´
phase portraits to confirm chaos by looking for featureless
~i.e., no invariant tori! phase portraits. In this way, by vary-
ing the parameters (e,ṽc) in a continuous fashion over the

whole plane, running the map repeatedly and obtaining the
resultingl ’s, we obtained the phase diagram for this system,
including a distinct ‘‘phase boundary’’ separating the quasi-
integrable and hard chaos regions. Of course, this phase
boundary depends on the precise value of the cutofflc we

FIG. 3. Average energy of an ensemble of points as a function
of time. ~a! e50.5, ~b! e51.0, and~c! e52.5; all other parameters
are as given above. The first is stable and oscillatory, the second
shows a quadratic growth in time~see the text!, while the third
exhibits quasilinear~diffusive! growth, corresponding to particles
diffusing through the chaotic sea.
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choose. Nevertheless, we checked that on varying the cutoff
lc , the phase boundary shifts only slightly and, furthermore,
the shape of the boundary remains qualitatively the same.
Indeed, to a high degree of precision, the phase boundary can
be fitted by

ṽc5C~lc!/e, ~26!

whereC(lc) is a constant that depends on the value of the
cutoff. Figure 1 shows the phase diagram for a cutoff
lc51.

We observe from the classical Poincare´ sections that there
is a symmetry line in the (r ,pr) plane. This arises from the
time-reversal invariance present in the problem as follows.
Consider a particle kicked att50. The positionr 0 remains
unchanged, while the momentum changes:
pr
(1)5pr

(2)1hr 0. Denotingpr
1 by p0, then at time 0

(2) the
particle has momentumpr

(2)5p02hr 0. Taking into account
the fact that the angular momentum is conserved, we see that
propagating a particleforward in time from (r 0 ,p0) is the
same as propagating itbackwardfrom (r 0 ,hr 02p0). Thus
the motion is symmetric about the linepr52 1

2hr . This sym-
metry is, of course, present in the quantum problem also,
where it will be exploited when calculating the Husimi dis-
tributions of the QEF’s. In the classical case, we exploit its
existence to plot the stable manifolds around hyperbolic
fixed points, which are otherwise very difficult to do because
of their extreme sensitivity to perturbations.

Although the map is very complicated, there are a few
periodic orbit cases that one can analytically study. By fol-
lowing the trajectory of the periodic orbit in phase space, and
given the mapping equations, we can reconstruct the initial
conditions giving rise to the orbit. For example, the fixed

point shown in the Fig. 4~for l55, \̃50.008,ṽc52A2, and
e51.0), labeled F, is given by r 0
50.755 280 031 542 06 . . . ,p052.438 385 340 120 17 . . . .

IV. QUANTUM TO CLASSICAL CORRESPONDENCE

As mentioned in the Introduction, one of the clear quan-
tum manifestations of classical chaos emerges when one
compares the spectral properties of specific model systems as

appropriate parameters are tuned to classically produce a
transition from integrable to completely chaotic regimes. In
this section we follow the general thinking developed in ran-
dom matrix theory~RMT! to implement different tests to
quantify the spectral properties of the model. These proper-
ties are obtained from a direct diagonalization of the one-
period time evolution matrix. For the results presented here

we vary the value ofe while keepingJ, \̃ , andṽc fixed, so
as to go from the integrable to the chaotic regime in the
phase diagram that coincide with the values considered in the
classical case. We note that the appropriate RMT statistical
ensemble is a circular orthogonal ensemble rather than a cir-
cular unitary ensemble because this model has a false-T
breaking symmetry.

Next we discuss the RMT tests and their application to the
results obtained for the QEE of our quantum dot model.

A. Nearest-neighbor QEE distributions

A local measure often used in RMT is the distribution of
nearest-neighbor energy level separationsP(s), where
s5«n112«n . In the extreme integrable and chaotic regimes
it has been established@11,12# thatP(s) takes the Poisson or
Wigner distribution forms

PP~s!5e2s, PW~s!5
p

2
se2~p/4!s2, ~27!

respectively. A convenient and often successful parametriza-
tion of the P(s) obtained in the transition betweenPP to
PW is provided by the Brody interpolation formula@13#

Pn~s!5g~n11!snexp~2gsn11!, ~28!

whereg5@G„(n12)/(n11)…#n11 andG(x) is the Gamma
function. This distribution is normalized and, by construc-
tion, has mean spacinĝs&51. We recover the Poisson case
taking n50 and Wigner forn51. A criticism to the Brody
distribution, however, is that there is no first-principles jus-
tification for its validity. The fact remains that it does fit the
specific results found when considering explicit model sys-
tems. Results of the transition, as parametrized byn, are
shown in Fig. 5.

We also calculated higher-order eigenvalue spectral cor-
relations@14#. The average number of levels in an interval of
lengthL is ^n(L)&5(1/L()a,n(a,L), where thê & stands
for spectral average andn(a,L) is the number of levels in an
interval of lengthL starting ata and ending ata1L. Also
important are the various moments of the level distribution.
The one considered here is the second moment of the aver-
age number of levels in a given stretch of lengthL of the
spectrum, theS2(L) statistic

^S2~L !&5^@n~a,L !2^n~a,L !&#2&. ~29!

Another often calculated statistic is the Dyson-Mehta
D3(L), which measures the stiffness of the spectrum. This is
defined by

D3~L,a!5
1

L
min
A,B

E
a

a1L

@Ñ~x!2Ax2B#2dx, ~30!

FIG. 4. Schematic trajectory of a period-4 orbit, corresponding
to (e,ṽc)5(1.0,2.8284 . . . ), which is close to the chaos border in
Fig. 1.
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whereÑ(x) is the unfolded number density. In our case there
is no need to unfold the spectrum since it is fully contained
between 0 and 2p; D3 is just the least mean-square deviation
of Ñ(x) from the mean straight-line behavior. This statistic is
directly proportional to the ^S2& by
D3(L)5(2/L4)*0

L(L32sL2x1x3)S2(x)dx and thus can be
calculated for the circular orthogonal ensemble~COE! as

well @15#. The specific theoretical predictions for the aver-
aged ^D3(L)&5(1/L()aD3(L,a) are D3

(COE)(L)
5(1/p2)ln$L%20.007 and^D3

(Poisson)(L)&5L/15. These re-
sults are correct in the asymptotic limit valid for 15<L.

In Fig. 6 we present our results for^D3& and ^S2&. In
these figures one clearly sees the transition from Poisson-like

~dashes! to COE-like ~solid line! behavior ase/ \̃ is varied.
We note that theD3 statistic does not saturate in the COE
limit, even for the maximum intervalL that we looked at, as
would be expected from semiclassical arguments originally
proposed by Berry@16#. Furthermore, note that for the larg-
estL considered the Poisson limit does not present the knee
seen in other completely integrable systems as was found
before@12#. Generally, the results shown in Fig. 6 are con-
sistent with what we have come to expect for the transition
between regular and chaotic regions.

B. Quasienergy eigenfunction statistics

Here we consider the statistical properties of the eigen-
function overlaps with the natural basis vectors. It has been
conjectured@17# that as the classical motion changes from
chaotic to regular, this distribution of overlaps can be repre-
sented by ax2 distribution inn degrees of freedom, withn
varying from 1 in the chaotic regime~the Porter-Thomas
limit ! to 0 in the regular region~the Poisson limit!:

Pn~y!5
~n/2!n/2

G~n/2!
yn/221exp~2ny/2!. ~31!

Herey[ z^lunl& z2, whereul& labels the QEF andunl& labels
a set ofN orthogonal basis vectors.~The y’s have been re-

FIG. 5. Nearest-neighbor spacing statisticP(s). Note the
gradual movement away from the Poisson to the COE distribution,
characterized by the Brody parametersn given by~a! 0.27,~b! 0.52,
and ~c! 1.0, for the (e,ṽc) values of Figs. 2~a!, 2~c!, and 2~d!,
respectively.

FIG. 6. ~a! ^D3(L)& and ~b! S2(L) statistics for the same
(e,ṽc) values as in Figs. 2~a!, 2~c!, and 2~d!. Again, ase increases,
we observe a transition from Poisson-like~dashed line! to COE-like
~solid line! behavior, reflecting the transition to chaos in the classi-
cal system.
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scaled so that̂y&51.! We have tested this hypothesis for the
overlap strengths for the same parameter values as for the
quasienergy eigenvalue statistics. The results are shown in
Fig. 7, plotted on a logarithmic scale. These results show the
general trend of decreasingn as we cross the phase boundary
from regular to chaotic classical motion. However, we note
that as we go from the COE to the Poisson limits, the fits to
the x2 get worse. Note especially the shift of the maxima
away from zero. This discrepancy is connected to the fact
that the results are strongly basis dependent when not in the
universal COE limit.

C. Semiclassical correspondences

We can now make a direct comparison between the clas-
sical and quantum results by employing a phase-space ap-
proach. To do this, we use the Husimi representation of the
QEF. The Husimi distribution, interpreted as a probability
density, is a coarse-grained version of the Wigner function
that goes smoothly to the semiclassical limit@18#. In prac-
tice, the most often used technique of coarse graining is to
take the overlap of the QEF with coherent oscillator states.
For the radial coordinate the coherent state is

C r0 ,p0
G ~r !5S s

p\̃
D 1/4expH 2

s

2\̃
~r2r 0!

21 i
p0

\̃
S r2

r 0
2 D J ,

~32!

which is a minimum-uncertainty Gaussian wave packet cen-
tered at (r 0 ,p0), with root mean-square deviations given by

Dr5A\̃ /2s, Dp5A\̃s/2, ands is the ‘‘squeezing’’ pa-
rameter. This parameter is adjusted when making compari-
sons to the classical phase-space plots. The Husimi distribu-
tion of a single QEFf«(r ) is then defined by

Ff«
~r 0 ,p0!5U E

0

1

C r0 ,p0
G ~r !f«~r !drU2. ~33!

The Husimi distribution is obtained by scanning through the
values of (r 0 ,p0) in the region of interest in phase space and
the result is compared with the classical surface of section.
We begin the comparison by noting the symmetry about the
line p52hr in the Husimi contour plots in Fig. 8. As men-
tioned earlier, this feature carries over from the classical re-
sults. We in fact used to effectively halve the numerical ef-
fort.

All calculations reported here were carried out for relative
cyclotron frequencyṽc52A2, angular momentum quantum
numberl55, relative ac to dc field strengthe51, and scaled

\̃50.008. In this case, all terms in the Hamiltonian are com-
parable in magnitude, which means that we are in a nonper-
turbative regime. Furthermore, we can clearly see both from
the phase diagram and the surface of section that this places
the system on the order-chaos border, where the dynamics is

FIG. 7. ~a!–~d! Distribution of amplitude overlaps of the QEF’s with the natural basis states for the same (e,ṽc) values as in Figs.
2~a!–~d!. Close to the COE limit~d!, the amplitudes are nearly Gaussian or Porter-Thomas randomly distributed. Away from this limit the
distributions are not well fitted by thex2 distributions, with a significant difference seen close to the Poisson limit. This discrepancy is
explained in the text. The values ofn from the fits are~a! 0.14, ~b! 0.27, ~c! 0.63, and~d! 0.9.
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quite ‘‘mixed.’’ A few calculations were done for different
values of the parameters, but no new qualitative features

emerged. In choosing the value of\̃ , we were guided by the

following considerations. The value of\̃ has to be small
enough so that the system is well into the semiclassical re-
gime, yet large enough so that the dimension of the truncated

Hilbert spaceN ~which grows as the inverse square of\̃ ) is
large enough to preserve unitarity. Moreover,N has to be
such that the largest eigenenergy ofHdc has to be larger than
the maximum energy of the classical particle in the region of
interest in phase space. All the interesting features seen in
this model are manifested in this regime. Finally, the classi-
cal conserved angular momentumJ was kept identical to the

quantum valuel \̃ .
The classical analysis was carried out for different values

of the angular momentumJ @19#. First, we iterated a single
~arbitrarily chosen! initial condition several thousand times,
which typically leads to the chaotic background as shown in
the figures. Embedded in this background are Kol’mogorov-
Arnol’d-Moser ~KAM ! tori centered around elliptic fixed
points, defined by choosing appropriate initial conditions. In
Fig. 8 we show several such tori and in particular a fixed
point of period 4 that was determined earlier analytically.
Also shown in each of the figures is a hyperbolic fixed point
of order 6, marked by its stable and unstable manifolds. The
fixed points were determined by using a modified Powell
method of determining zeros of coupled nonlinear sets of
equations@20#. This method, like all multidimensional root-
finding techniques, requires a good initial guess to converge
to the fixed point, but once given it determines the root and
the monodromy matrix equation~i.e., the Jacobian or the

determinant of the linearized version of the map! reliably and
accurately. The fixed points are elliptic, parabolic or hyper-
bolic if the discriminant obtained from the eigenvalues@i.e.,
(trace)224(determinant)# is negative, zero, or positive, re-
spectively. In all cases, it was verified, within numerical er-
ror, that the map was area preserving, i.e., the determinant
was equal to one. The unstable manifold was obtained by
iterating the map along the direction given by the eigenvec-
tor corresponding to the eigenvalue larger than one. The
stablemanifold is given by the time-reversed version of the
unstable one.

A comparison of the Husimi distributionsFf«(r 0 ,p0)
with the classical phase-space plots shows some striking
similarities. There are, for many QEF’s, many structures that
unmistakably correspond to elliptic, parabolic, and hyper-
bolic periodic orbits, as seen in Fig. 8. For example, the
Husimi representation of one of the QEF’s sits on top of the
analytic period-2 fixed point markedF. Also seen in the
figure are Husimi distributions that peakexactlyon top of the
unstable hyperbolic period-6 fixed point, referred to in the
literature as ‘‘scars’’@21#. This correspondence is so robust,
in fact, that often when a good guess to theclassicalhyper-
bolic fixed points is unavailable, the Husimi distributions are
used as a guide to the location of the fixed point~being
unstable, hyperbolic fixed points cannot be located without a
very good initial guess!. These enhanced probability densi-
ties are conjectured to play as important a role in quantum
mechanics as the hyperbolic orbits play in classical chaos.
Finally, a rare but persistent occurrence in all the cases con-
sidered is that of a single Husimi distribution peaked simul-
taneously overboth elliptic and hyperbolic fixed points, re-
flecting a purely quantum-mechanical tunneling across the
KAM tori. Here we have only shown representative results
of the correspondence between Husimi distributions and
classical solutions.

V. EXPERIMENTAL FEASIBILITY

Before concluding, we present some experimental sce-
narios where the predicted effects may be observable. A
‘‘typical’’ GaAs-Al xGa12xAs semiconductor quantum dot
@22,23# has a radiusR0 between 0.1 and 10mm, a sheet
density n;1011 cm22, and a mobilitym;2.653105 cm
2/V s. The typical level spacingDe;0.05 meV or;500
mK. The operating temperatures is generally of the order of
0.1 K, so kT;0.01 meV is smaller thanDe and thus the
discrete spectrum can be accessed. A typical elastic mean
free pathlf;10 mm and the phase coherence length varies
between 15 and 50mm. The power injected is typically less
than 1 nW, which avoids the problem of electron heating.

Given these parameters, we can estimate in physical units
the field strengths and frequencies required to observe the
effects predicted by our model. Let us first calculate these
assuming a dot radiusR0;1 mm. The fundamental kick fre-
quencyv0 in our problem can be deduced from Eq.~4b! as

v05\/(m*R0
2\̃ ).@1/\̃ # 23109 s21. From this we can de-

duce the required dc and ac magnetic field magnitudes

Bdc5
v0m* c

e
ṽc.20

ṽc

\̃
G, ~34!

FIG. 8. Contour plots of the Husimi distribution of three QEF’s.
The Husimi distributions labeledA correspond to the period-4 so-
lution, while the one labeledB is another example of an enhanced
probability distribution over an elliptic fixed point of period 4. Fi-
nally, we also see a Husimi distribution of a QEF that corresponds
to the period-6 hyperbolic orbit marked by its stable and unstable
manifolds, a ‘‘scarred’’ eigenfunction.~The rectangle at the top-
right corner indicates the uncertaintiesDX,DP.!
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Bac5eBdc.20
eṽc

\̃
G. ~35!

Finally, the Larmor frequency associated with the ac field is
given by vac5eṽc.eṽc /(\̃)23107s21. The dot radius
R0 in Ref. @23# is about 5mm. For this radius, the frequency

and dc magnetic field magnitudes arev0. 83107 s21\̃ 21

andBdc.0.8ṽc \̃ 21Gauss.
With these values, we can see what physical parameters

correspond to the integrable and chaotic regimes. We fix

\̃50.1 and choose as representative parameters
(e,ṽc)

(reg!5(0.1,0.1) where the motion is regular and the
parameters (e,ṽc)

(chaos)5(2.0,2.0) where the motion is cha-
otic. Then, forR0;1 mm, the frequency and ac fields cor-
responding to the regular regime are

v0
~reg!.20 GHz, Bac

~reg!.20 G, ~36!

while those corresponding to the chaotic regime are

v0
~chaos!.20 GHz, Bac

~chaos!.800 G. ~37!

For the caseR0;5 mm, the frequencies and fields are, for
the regular regime,

v0
~reg!.800 MHz, Bac

~reg!.0.08 G ~38!

and, for the chaotic regime,

v0
~chaos!.800 MHz, Bac

~chaos!.32 G. ~39!

With the appropriate techniques of measurement, for ex-
ample, by using an array of;105 isolatedquantum dots to
increase the magnitude of the signal and using a highly sen-
sitive electromagnetic superconducting microresonator to
measure the response, as was done by Reuletet al. in Ref.
@24# to measure the dynamic conductance of mesoscopic
rings threaded by Aharonov-Bohm fluxes, we believe that an
experimental realization of this system is feasible.

VI. CONCLUSION

We have shown that the model of an electron in a rigid
quantum dot structure subject to constant and periodically
kicked magnetic fields shows a transition to chaos, depend-
ing on the relationship between the strengths of the fields and
the cyclotron frequency of the steady field. This relationship
is characterized by a phase diagram in parameter space,
shown in Fig. 1. The nature of various periodic orbits was
investigated. The quantum signatures of this transition are
evidenced in two measures. First, as the classical system
goes from integrable to chaotic, the statistics of the quasien-
ergy spectrum follow the route from Poisson-like to COE-
like. Second, the contour plots of the Husimi distribution of
the quasienergy eigenfunctions clearly exhibit the phenom-
enon of scarring over unstable periodic orbits. Finally, we
have presented some experimental ranges of the parameters
where the effects of chaos in the system may be observable.
To sum up, all tests applied to the classical quantum corre-
spondence are in full agreement with the established quan-
tum manifestations of classical chaos. The many-electron

problem is planned to be treated elsewhere@25#.
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APPENDIX

In this appendix we show that the classical particle and
field equations of motion can be written exactly for a peri-
odically kicked magnetic field. Starting from the Lorenz
force equation

m*
d2r

dt2
5m*

dv

dt
5eH vc3B~ t !1E~ t !J , ~A1a!

where

B~ t !5S Bdc1BacT0 (
n52`

`

d~ t2nT0!D êz[$Bdc1BacD~ t !%êz

~A1b!

and

E~ t !52
1

c

]

]t
A~ t !5

Bac

2c
Ḋ~ t !~r3êz!, ~A1c!

then, on substituting Eqs.~A1b! and ~A1c! into Eq. ~A1a!
and using the definition ofvc , we get

dv

dt
5vc~v3êz!1evc~v3êz!D~ t !1

evc

2
~r3êz!Ḋ~ t !.

~A2!

Using the standard property of thed function
* f (x)d8(x2a)dx52 f 8(a), the last term becomes
(e5Bac/Bdc)

evc

2
~v3êz!D~ t !. ~A3!

Thus theexactequations of motion can be written as

dv

dt
5vc~v3êz!H 11

e

2
T0 (

n52`

`

d~ t2nT0!J . ~A4!

Note that the only difference we have from including the
inducedE field is a factor of 1/2 in the kicked component of
theB field.

The reason the same analysis cannot be done the same
way in the quantum problem is that there it is the vector
potential that is the relevant dynamical variable. Thus,
if we use an A 5 A dc 1 A ac(t) with Aac(t)
.(n5-`

` Bac(r)d(t2nT0), we see that we have a mathemati-
cal ambiguity in the definition ofA ac

2 . Nonetheless, one can
carry out the nonrelativistic analysis with our model Hamil-
tonian that contains, we believe, the essential physics of the
problem and yet is mathematically tractable.
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